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1. Sequences

A sequence of real numbers is a function

a : N → R;

if n ∈ N, we typically write an instead of a(n). We denote the sequence a : N → R
by (an).

Let (an) be a sequence and let L ∈ R. We say that (an) converges to L if for
every ε > 0 there exists N ∈ N such that

N < n ⇒ |an − L| < ε.

If a sequence converges to a real number L, we say it is convergent, and we
say that L is the limit of the sequence; we may write

L = lim
n→∞

an.

It is a fact that limits, when they exist, are unique.
If a sequence does not converge to a real number L, it is divergent.
One may form sums and products of sequences:

(an) + (bn) = (an + bn)

(an)(bn) = (anbn)

If (an) converges to L1 and bn converges to L2, then (an) + (bn) converges to
L1 + L2 and (an)(bn) converges to L1L2.

If (an) is nonzero and converges to L, then

lim
n→∞

1
an

=
1
L

.

Let (an) be a sequence. We say (an) is increasing if am ≤ an whenever m ≤ n;
we say that (an) is decreasing if am ≥ an whenever m ≤ n; we say that (an) is
monotone if it is either increasing or decreasing. We say that (an) is bounded if
there exists a positive real number B such that an ∈ [−B,B] for all n ∈ N.

Fact 1. (Bounded Monotone Convergence Rule)
A bounded monotone sequence of real numbers converges.

Fact 2. (Squeeze Law)
If (an) and (bn) both converge to L, and an ≤ cn ≤ bn for all n ∈ N, then (cn)
converges to L.
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2. Series

Let (an) be a sequence. Then nth partial sum of this series is

sn =
n∑

i=0

.

A series is a sequence of the form (sn), where sn is the nth partial sum of
some sequence (an). Such a series may be denoted by

∑
an.

A series
∑

an converges if the sequence of partial sums converges. In this
case, we let

∑∞
n=0 an denote the limit of the series.

We say a series
∑

an converges absolutely if the associated series
∑
|an| con-

verges. If a series converges absolutely, then it converges.
One may form sums and products of series:∑

an +
∑

bn =
∑

(an + bn);∑
an

∑
bn =

∞∑
n=1

( n∑
j=1

ajbn−j

)
.

If
∑

an converges to S1 and
∑

bn converges to S2, then
∑

an +
∑

bn converges
to S1 + S2 and

∑
an

∑
bn converges to S1S2.

Fact 3. (Limit Test)
If

∑
an converges, then limn→∞ an = 0.

Reason. Set s =
∑

an. Note that an − sn − sn−1, where sn =
∑n

i=1, so that
s = lim sn. Now (sn−1) is a sequence, whose limit is also clearly s. Thus

lim an = lim(sn − sn−1) = lim sn − lim sn−1 = s− s = 0.

�

Fact 4. (Comparison Test)
Let

∑
cn be a convergent series and let

∑
dn be a divergent series.

(a) If 0 ≤ an ≤ cn for all n ∈ N, then
∑

an converges.
(b) If 0 ≤ dn ≤ bn for all n ∈ N, then

∑
bn diverges.

Fact 5. (Geometric Series Test)
Let r ≥ 0.

(a) If r < 1, then
∑

rn converges to 1
1−r .

(b) If r ≥ 1, then
∑

rn diverges.

Reason. Note that 1−xn = (1−x)(1+x+· · ·+xn−1); therefore 1−xn

1−x =
∑n−1

i=0 xi.
If |x| < 1, then xn → 0 as n →∞; thus

∞∑
i=0

xn = lim
n→∞

n−1∑
i=0

xi

= lim
n→∞

1− xn

1− x

=
1

1− x
.

�
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Fact 6. (Alternating Series Test)
Let (an) be a decreasing sequence of nonnegative real numbers which converges
to zero. Then

∑
(−1)nan converges.

Reason. Note that 0 ≤ s2 ≤ s4 ≤ s6 ≤ · · · ≤ a1. Thus (s2n) is a bounded
monotone sequence, and so it converges, say to s. Then lim s2n+1 = lim s2n +
lim a2n+1 = s + 0 = s. �

Fact 7. (Ratio Test)
Let (an) be a sequence of positive real numbers such that

lim
n→∞

an+1

an
= L.

Then
∑

an converges if L < 1 and
∑

an diverges if L > 1.

Reason. Suppose 0 < L < 1. Select r such that 0 < L < r < 1. Let N be so
large that ∣∣∣an+1

an

∣∣∣ < r for n ≥ N.

Then |an+1| < r|an|, for n ≥ N .
In particular, |aN+1| < r|aN |, |aN+2| < r|aN+1| < r2|aN |, and in general,

|aN+k| < rk|aN |. Now
∞∑

k=1

|an| <
∞∑

k=1

|aN |rk,

which converges. �

Fact 8. (Root Test)
Let (an) be a sequence of positive real numbers such that

lim
n→∞

√
nan = L.

Then
∑

an converges if L < 1 and
∑

an diverges if L > 1.
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3. Power Series

A power series centered at x0 ∈ A, where A ⊂ R, is a function

f : A → R
which can be expressed in the form

f(x) =
∞∑

i=0

an(x− x0)n.

Here, A is the set of points x ∈ A where f(x) converges. First we want to under-
stand the set A. If we say R ∈ [0,∞], we mean that R is either a nonnegative
real number or R = ∞.

Fact 9. Let f(x) =
∑

an(x−x0)n be a power series. Then there exists a number
R ∈ [0,∞] such that

(a) f(x) converges absolutely if |x− x0| < R;
(b) f(x) diverges if |x− x0| > R.

This number R is called the radius of convergence of f .

We may compute the radius of convergence using our knowledge of series; in
particular, the ratio test is useful. Suppose that

lim
n→∞

|an+1|
|an|

= L.

Let r = x− x0. Then

lim
n→∞

|an+1(x− x0)n+1|
|an(x− x0)n|

= lim
n→∞

|an+1r

an
| = rL.

Now f(x) =
∑

an(x − x0)n converges at the point x if rL < 1, which happens
if r < 1

L . On the other hand, if r > 1
L , then f(x) diverges. Thus the radius of

convergence is R = 1
L , i.e.,

R = lim
n→∞

|an|
|an+1|

.

Similarly, we can use the root test to derive the formula

R = lim
n→∞

1
n
√

an
.

Let f(x) =
∑

an(x−x0)n be a power series and let R be its radius of conver-
gence. The interval of convergence of f(x) the open interval I = (x0−R, x0+R);
if R = ∞, we take this to mean I = R.
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4. Power Series Algebra

We have defined power series as functions, and they behave very much like
polynomial functions in a couple of ways.

Two functions are equal if and only if they have the same domain and range
and take on the same value at every point in the domain. The following gives
a useful condition for two power series to be equal; this condition is directly
analogous to the condition for polynomial functions.

Fact 10. Let f(x) =
∑∞

n=0 an(x − x0)n and g(x) =
∑∞

n=0 bn(x − x0)n be two
power series centered at x0. Then f = g as functions if and only if an = bn for
every n ∈ N.

The sum and product of functions is defined pointwise: (f + g)(x) = f(x) +
g(x), and (fg)(x) = f(x)g(x). In the polynomial case, these can be obtained by
distribution and reassociation. This remains true for power series.

Fact 11. Let f(x) =
∑∞

n=0 an(x − x0)n and g(x) =
∑∞

n=0 bn(x − x0)n be two
power series centered at x0. Then f + g and fg are power series given by

(f + g)(x) =
∞∑

n=0

(an + bn)(x− x0)n

and

(fg)(x) =
∞∑

n=0

[ n∑
i=0

aibn−i

]
(x− x0)n.

5. Shifting the Index of a Power Series

Let k ∈ Z and consider the infinite sum
∞∑

n=k

an(x− x0)n.

If k < 0, then this is not a power series. However, if k > 0, we consider this to
be the power series by understanding that ai = 0 for i = 0, . . . , k − 1.

It is sometimes convenient to shift the index of a power series. The following
is a formula for doing so:

∞∑
n=k

an(x− x0)n =
∞∑

n=0

an−k(x− x0)n−k.
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6. Differentiation of Power Series

It seems reasonable one may pass the differentiation operator inside the infi-
nite sum:

d

dx

∞∑
n=0

an(x− x0)n =
∞∑

n=0

d

dx
(an(x− x0)n)

=
∞∑

n=0

nan(x− x0)n−1.

This is indeed the case.

Fact 12. Let f(x) =
∑

an(x− x0)n be a power series. Then f is differentiable
in its radius of convergence, and

f ′(x) =
∞∑

n=1

nan(x− x0)n−1.

Let f(x) =
∑

an(x − x0)n be a power series. We know attempt to find a
formula which relates the derivatives of f to the coefficients an.

Note that for any power series, if we evaluate it at its center, we pick out the
first coefficient because all of the other terms vanish at the center. By succesively
differentiating the power series, we shift the coefficients to the left. At each stage
we write the first few terms to see how this goes.

Start with

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + a3(x− x0)3 + . . . ;

thus f(x0) = a0, since all of the other terms in the series are of the form an(x−
x0)n and so they vanish at x0.

Now f ′(x) is the power series

f ′(x) = a1 +
a2

2
(x− x0) +

a3

3
(x− x0)2 +

a4

4
(x− x0)3 + . . . ;

by plugging in x0, we pick off the constant coefficient; this time, we get f ′(x0) =
a1.

Differentiating again shifts the coefficients to the left to get

f ′′(x) =
a2

2
+

a3

2 · 3
(x− x0) +

a4

3 · 4
(x− x0)2 +

a5

4 · 5
(x− x0)3 + . . . ;

thus f ′′(x0) = a2
2 .

One more time gives

f ′′′(x) =
a3

2 · 3
+

a4

2 · 3 · 4
(x− x0) +

a5

3 · 4 · 5
(x− x0)2 +

a6

4 · 5 · 6
(x− x0)3 + . . . ;

thus f ′′′(x) = a3
6 .

We now see the pattern; by the nth differentiation, the nth coefficient has
moved into the constant coefficient position, but has been divided by n! along
the way. This gives us our main formula regarding power series.

Fact 13. Let f(x) =
∑

an(x − x0)n be a power series with positive radius of
convergence. Then

an =
f (n)(x0)

n!
.
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7. Taylor Series and Analytic Functions

Let I ⊂ R be an open interval and let g : I → R be a smooth function on I.
Let x0 ∈ I.

The Taylor series of f expanded around x0 There is a natural power series
associated to the function g and the point x0, called the Taylor series of f
expanded around x0, and defined by

f(x) =
∑

an(x− x0)n,

where

an =
f (n)(x0)

n!
.

Note that if g is already a power series, it is equal to the associated power
series around any point x0 ∈ I.

We say that g is analytic at x0 if there exists a sequence (an) of real numbers
and a real number R > 0 such that for every x ∈ I ∩ (x0−R, x0 +R), the power
series

f(x) =
∑

an(x− x0)n

converges, and f(x) = g(x). We say that g is analytic if it is analytic at every
point in I.

We see that g is analytic when it is equal to its Taylor series expansion around
any point, and that the constant R above can be taken to be the radius of
convergence of the Taylor series.

Fact 14. Let f : I → R be analytic at x0 ∈ I with radius of convergence R. Let
x1 ∈ I ∩ (x0 −R, x0 + R). Then f is analytic at x1, with radius of convergence
greater than or equal to min{x1 − x0 + R, x0 + R− x1}.

Let f : I → R and g : I → R be analytic, and let c ∈ R be a constant. Then
f + g : I → R, cf : I → R, and fg : I → R are also analytic. Quotients of
analytic functions are analytic in their domain of definition (with one caveat we
will see later). If f and g are expanded around the same point x0 ∈ I, the radius
of convergence of these derived functions is at least as large as the minimum
radius of convergence between f and g.

Let A(I) = {f : I → R | f is analytic }. Then A(I) is a vector space over R.
Let f(x) =

∑
an(x−x0)n be analytic. We say that f(x) is entire if the radius

of convergence of f around x0 is infinite. When this is the case, the radius of
convergence of f expanded around any real number is still infinite.

The following functions are entire: constants, polynomials, exp, sin, and cos.
Quotients of analytic functions are analytic in their domain of definition.
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8. Standard Examples

Example 1. Find the Taylor expansion for f(x) = exp(x) around 0 and its
radius of convergence.

Solution. All derivatives of f are the same. Thus the coefficients are simply

an =
fn(0)

n!
=

exp(0)
n!

=
1
n!

.

Thus

f(x) =
∞∑

n=0

xn

n!
.

The radius of convergence is

R = lim
n→∞

1/n!
1/(n + 1)!

= lim
n→∞

n + 1 = ∞.

Thus exp is entire. �

Example 2. The Taylor expansion of sin(x) around 0 is given by

sin(x) =
∞∑

n=1

(−1)n+1 x2n−1

(2n− 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . . .

Thus sin is entire by the alternating series test.

Example 3. The Taylor expansion of cos(x) around 0 is given by

cos(x) =
∞∑

n=0

(−1)n x2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ . . . .

Thus cos is entire by the alternating series test.

Example 4. Find the Taylor expansion for f(x) = tanx around 0 and its radius
of convergence.

Solution. First we take derivatives:

f ′(x) = sec2 x; f ′′(x) = 2 sec2 x tanx; f ′′′(x) = 4 sec2 x tan2 x + sec4 x.

Now we evaluate at 0:

f(0) = 0; f ′(0) = 1; f ′′(0) = 0; f ′′′(0) = 1.

�

Example 5. The Taylor expansion of log(1 + x) around 0 is given by

log(1 + x) =
∞∑

n=1

(−1)n−1 xn

n
.

Its radius of convergence is 1.
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Example 6. Compute the Taylor expansion of f(x) = 1
1+x around x0 = 0 and

find its radius of convergence.

Solution. First, we differentiate until we begin to see a pattern. Then we plug
in 0.

f(x) =
1

1 + x
f(0) = 1 = 0!

f ′(x) =
−1

(1 + x)2
f ′(0) = −1 = −1!

f ′′(x) =
2

(1 + x)3
f ′′(0) = 2 = 2!

f ′′′(x) =
−6

(1 + x)4
f ′′′(0) = −6 = −3!

f iv(x) =
24

(1 + x)5
f iv(0) = 24 = 4!

We see that f (n)(0) = (−1)nn!. Then an = (−1)n, and

f(x) =
∞∑

n=0

(−1)nxn.

There is an easier way to do this by using the geometric series. Let r = −x;
then

f(x) =
1

1− r
=

∞∑
n=0

rn =
∞∑

n=0

(−1)nxn.

The radius of convergence is 1. �

We see that, in this example, the radius of convergence centered at x0 is the
distance from x0 to the nearest point of discontinuity.

Example 7. Compute the Taylor expansion of g(x) = 1
1+x2 around x0 = 0 and

find its radius of convergence.

Solution. Note that g(x) = f(x2), where f(x) = 1
1+x . Then

g(x) =
∞∑

n=0

(−1)nx2n.

This is a power series with the coefficients of the odd terms all equal to zero. Its
radius of convergence is still equal to 1. �

In this example, the function g(x) is continuous and analytic at every point
x ∈ R. Then why does it have a finite radius of convergence? We answer this
after one more example.
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Example 8. Compute the Taylor expansion of f(x) = arctan(x) around x0 = 0
and find its radius of convergence.

Solution. Let f(x) = arctan(x). Then f ′(x) = 1
1+x2 ; view this as a geometric

series. This produces

f ′(x) =
1

1 + x2

=
1

1− (−x2)

=
∞∑

n=0

(−x2)n

=
∞∑

n=0

(−1)nx2n

= 1− x2 + x4 − x6 + x8 + · · · .

Now

f(x) =
∫

1
1 + x2

dx

=
∫ ( ∞∑

n=0

(−1)nx2n
)

dx

=
∞∑

n=0

(−1)n

∫
x2n dx

=
∞∑

n=1

(−1)n x2n+1

2n + 1

= x− x3

3
+

x5

5
− x7

7
+ · · · .

�
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9. Binomial Theorem

Power series are a generalization of polynomials. The extent to which this
is true is illuminated by the generalized binomial theorem, discovered by Isaac
Newton in the seventeenth century.

Let n ∈ N, and define
(
n
i

)
to be the number of possible ways to choose a set

of i things from a set of n things. We see that there are n choices for the first
thing, n− 1 choices for the second, and so forth, until finally there are n− i + 1
choices for the ith thing. Thus there are n(n− 1) · · · (n− i) = n!

i! possibilities for
choosing i things, in a certain order. There are i! possible different orders for
the same set of i things, so altogether we have(

n

i

)
=

n!
i!(n− i)!

.

These numbers are exactly those which are produces via Pascal’s Triangle, and
are called the binomial coefficients. This name comes from the binomial theorem
for positive integers, which we state as

(x + 1)n =
n∑

i=0

(
n

i

)
xi.

This may be thought of as follows: multiplying x + 1 by itself n times using
distribution involves 2n multiplications of n things, either x or 1 from each of
the n copies of the (x + 1)’s that are being multiplied. Each such multiplication
involves choosing either x or 1 from each binomial (x+1). There are

(
n
i

)
different

ways of selecting i x’s and (n− i) 1’s. When we collect like terms, the coefficient
of xi is the number of xi’s occurring in the sum; this is

(
n
i

)
.

Suppose that i > n; there are zero ways of choosing a set of i items from of a
set of n items, so the natural definition in this case is

(
n
i

)
= 0. In this case, we

may write (x + 1)n as a power series:

(x + 1)n =
∞∑

i=0

(
n

i

)
xi,

because
(
n
i

)
= 0 for i > n.

Newton saw this, and generalized it in the following fashion, which we explain
in modern notation.

Let α ∈ R, and consider the function f(x) = (x + 1)α. Then

f ′(x) = α(x+1)α−1, f ′′(x) = α(α−1)(x+1)α−2, f ′′′(x) = α(α−1)α−2)(x+1)α−3,

and so forth. Generalizing the binomial coefficients, for i ∈ N define(
α

i

)
=

∏i−1
j=0(α− j)

i!
.

Here we use the convention that the empty product is 1, so
(
α
0

)
= 1. Then we

see that

f (i)(x) = i!
(

α

i− 1

)
(x + 1)α−i.

Evaluating this at x0 = 0, we have

f (i)(0) = i!
(

α

i− 1

)
.
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Thus the ith coefficient of the Taylor expansion of f around x0 = 0 is

ai =
f (i)(0)

i!
=

(
α

i

)
,

so the Taylor series of f(x) is

f(x) =
∞∑

i=0

(
α

i

)
xi;

this is known as the binomial series. The radius of convergence of the binomial
series is

R = lim
i→∞

∣∣∣ α(α− 1) · · · (α− i + 1)/i!
α(α− 1) · · · (α− i)/(i + 1)!

∣∣∣ = lim
i→∞

∣∣∣ i + 1
α− i

∣∣∣ = lim
i→∞

∣∣∣ 1 + 1
i

1− α
i

∣∣∣ = 1.

For example, let f(x) =
√

1− x = (1− x)
1
2 . Then

√
1− x =

∞∑
i=0

(
1/2
i

)
(−x)i

= 1 +
1
2
(−x) +

(1
2

)(
− 1

2

) (−x)2

2!
+

(1
2

)(
− 1

2

)(
− 3

2

) (−x)3

3!

+
(1

2

)(
− 1

2

)(
− 3

2

)(
− 5

2

) (−x)4

4!

+
(1

2

)(
− 1

2

)(
− 3

2

)(
− 5

2

)(
− 7

2

) (−x)5

5!
+ · · ·

= 1− 1
2
x− 1

8
x2 − 1

16
x3 − 5

128
x4 − 7

256
x5 + · · ·

Newton used this to estimate
√

3, using that
√

3 =
√

4− 1 = 2

√
1− 1

4
.

Letting x = 1
4 , we have

√
3 ≈ 2(1− 1

2
· 1
4
− 1

8
· 1
16
− 1

16
· 1
64
− 5

128
· 1
256

− 7
256

· 1
1024

)

= 2− 1
4
− 1

64
− 1

512
− 5

16384
− 7

131072
≈ 1.732063293.

Let s = 1.732063293; to nine decimal places, the actual value is
√

3 ≈
1.732050808. To get more accuracy, Newton could have just used a few more
terms.
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10. Newton’s Approximation for π

Consider the function f(x) =
√

x− x2. The graph of this function is the
upper half of a circle of radius one half centered at the point ( 1

2 , 0). Compute
the area under the curve between x = 0 and x = 1

4 in two ways; using the
method of “fluxions”, and then using geometry.

10.1. Area by Fluxions. The method of fluxions, expressed in modern lan-
guage, consists of expanding functions into their Taylor series, the differentiating
or integrating term by term. The area of which speak is∫ 1

4

0

f(x) dx =
∫ √

x
√

1− x dx
∣∣∣
1
4

≈
∫ √

x
(
1− 1

2
x− 1

8
x2 − 1

16
x3 − 5

128
x4 − 7

256
x5

)
dx

∣∣∣
1
4

=
∫ (

x1/2 − 1
2
x3/2 − 1

8
x5/2 − 1

16
x7/2 − 5

128
x9/2 − 7

256
x11/2

)
dx

∣∣∣
1
4

=
2
3
x3/2 − 1

5
x5/2 − 1

28
x7/2 − 1

72
x9/2 − 5

704
x11/2 − 7

1664
x13/2

∣∣∣
1
4

=
2
3

(1
2

)3

− 1
5

(1
2

)5

− 1
28

(1
2

)7

− 1
72

(1
2

)9

− 5
704

(1
2

)11

− 7
1664

(1
2

)13

=
1
12
− 1

1670
− 1

3584
− 1

36864
− 5

1441792
− 7

13631488
≈ 0.076773207.

Let a = 0.076773207; this is our approximation for the area of the region being
considered.

10.2. Area by Geometry. Let O = (0, 0), A = ( 1
4 , 0), B = ( 1

2 , 0), and C =
( 1
4 ,
√

3
4 ). Then C is on the semicircle y =

√
x− x2. The sector OBC is one sixth

of this circle if radius 1
2 , so its area is π

24 . The triangle ABC has area 1
2 ·

1
2 ·

√
3

4 ;
thus the area of the sector is π

24 −
√

3
16 . This is approximately equal to a, so

π ≈ 24(a +
√

3
16

) ≈ 24(a +
s

16
),

where s = 1.732063293 is the approximation for
√

3 we obtained in the last
section. Thus

π ≈ 3.141604438.

Newton actually carried this approximation out using nine terms of the binomial
expansion, and obtained an estimate for π which was accurate to the seventh
decimal place.
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11. Analytic Functions and Complex Numbers

Why do some functions have a finite radius of convergence? For example, we
know that tanx is not defined wherever cos x = 0, for example at x = pi

2 , so if we
expand tan x around x0 = 0, we are bound to see that the radius of convergence
is no bigger than π

2 ; on the other hand, since sinx and cos x are entire and cos x
is nonzero in I = (−π

2 , π
2 ), we expect that tanx is analytic in I so the radius of

convergence of the expansion around 0 should be exactly π
2 , which turns out to

be the case.
However, this doesn’t explain the radius of convergence of the function f(x) =

x
1+x2 , which is analytic in the interval I = (−1, 1), but when expanded around
zero has a radius of convergence of only 1. The numerator and denominator are
analytic and the denoninator is nonvanishing for all real numbers x; why isn’t f
analytic? To understand this, we must expand our vision to the complex plane.

Our entire theory of sequences, series, power series, and Taylor series general-
izes to use of complex numbers. A complex power series has a disk of convergence;
if

f(z) =
∑

an(z − z0)n,

where an, z0 ∈ C, then f converges in a disk around z0 of radius R, where R is
the radius of convergence as computed above (the absolute value of a complex
number is its modulus).

The answer to our question is: the radius of convergence is the distance to
the nearest nonremovable complex singularity. Let us examine what this means.
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12. Laurent Series

Let I ⊂ R be an open interval. Let x0 ∈ I and let A = I r {x0}.
A (inessential) Laurent series at x0 is a function g : A → R such that there

exists an integer k ∈ Z and real number ak, ak+1, · · · ∈ R such that

g(x) =
∞∑

n=k

ak(x− x0)k.

If k ≥ 0, a Laurent series is a power series.
Let f : I → R be analytic. We attempt to find a Laurent series for 1

f at x0.
In particular, we try to find the number of negatively indexed coefficients in the
inverse of f .

If we let an = f(n)

n! , then

f(x) =
∞∑

n=0

an(x− x0)n.

We seek a function

g(x) =
∞∑

n=k

bn(x− x0)n,

where k ≤ 0 and bk 6= 0, such that fg(x) = 1 for every x ∈ I. Let cn be the nth

term in the product; the lowest possible value for n is k. Then cn =
∑

i−j=0 aibj ;
when we multiply these series, we should get

ck = a0bk

ck+1 = a0bk+1 + a1bk

ck+2 = a0bk+2 + a1bk+1 + a2bk+3

...
c−1 = a0b−1 + · · ·+ ak−1bk

c0 = a0b0 + · · ·+ akbk

c1 = a0b1 + · · ·+ ak+1bk

We want c0 = 1 and all other cn = 0. Then we better have a0 = 0 (consider ck),
whence a1 = 0 (considering ck+1), and so forth up to ak−1. The first an which
is not equal to zero is at n = k.
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13. Singularities

Let I ⊂ R be an open interval. Let x0 ∈ I and let A = Ir{x0}. Let g : A → R
be analytic on A.

We say that g is meromorphic at x0 if we may write g as an inessential Laurent
series centered at x0. We say that x0 is a singularity of g.

Let g : I → R be meromorphic at x0. We say that the singularity at x0 is
removable if limx→x0 g(x) exists; in this case, we may define

f(x) =

{
g(x) if x 6= x0;
limx→x0 f(x) if x = x0.

Then f(x) is analytic at x0; we think of f and g as interchangable, and can write
f as a power series around x0.

We say that g has a zero of order n at x0 if n is smallest integer such that the
nth coefficient of the Laurent expansion of f is nonzero. Equivalently, this is the
maximum positive integer n such that g(x)

xn has a removable singularity at x0.
We say that g has a pole of order n at x0 if n is the minimum number of

negatively indexed terms in the Laurent expansion of g. Equivalently, this is the
maximum positive integer n such that (x−x0)ng(x) has a removable singularity
at x0.

Note that g has a pole of order n at x0 if and only if g has a zero of order −n
at x0.

If f has a zero of order n at x0 and g has a pole of order n at x0, then fg
has a removable singularity at x0, and fg(x0) 6= 0; equivalently, fg has a zero of
order 0 at x0.
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